ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки автоматические трехфазные для поверки счётчиков электрической энергии HEBA-Тест 6303

Назначение средства измерений

Установки автоматические трехфазные для поверки счётчиков электрической энергии НЕВА-Тест 6303 (далее – Установки) предназначены для регулировки, калибровки и поверки средств измерения (СИ) активной, реактивной, полной мощности и энергии, СИ промышленной частоты, действующих значений напряжения и тока, фазовых углов и коэффициента мощности:

- однофазных и трехфазных счетчиков активной и реактивной электрической энергии,
- однофазных и трехфазных ваттметров, варметров и измерительных преобразователей активной и реактивной мощности,
- энергетических фазометров, частотомеров и измерителей коэффициента мощности,
- вольтметров, амперметров и измерительных преобразователей напряжения и тока в промышленной области частот.

Область применения – поверочные и испытательные лаборатории, а также предприятия, изготавливающие и ремонтирующие средства измерений электроэнергетических величин.

Установка может быть использована автономно или в сочетании с персональным компьютером (ПК), расширяющим ее функциональные возможности.

Описание средства измерений

Установка выполнена в виде функционально законченного рабочего места поверителя и может работать в двух режимах:

- при управлении от ПК по последовательному интерфейсу с помощью программного обеспечения (ПО) «Тест-СОФТ»;
- в автономном режиме при управлении с клавиатуры и контролем по индикаторам, расположенным на лицевых панелях Установки и эталонного счетчика.

Отображение параметров сигналов осуществляется на встроенном дисплее блока управления и на встроенном дисплее эталонного счетчика, либо на ПК с помощью ПО «Тест-СОФТ».

В состав Установки входит:

- эталонное средство измерения (эталонный счетчик),
- вычислители погрешности,
- блок управления,
- трехфазный источник фиктивной мощности.

В состав источника фиктивной мощности входят:

- блок генератора (трехфазный источник испытательных сигналов),
- усилители тока и напряжения.

Источник фиктивной мощности и эталонное средство измерения монтируются в приборной стойке, на которой расположен стенд для установки и подключения поверяемых счетчиков (рис.1).

Установки могут быть оснащены:

- трехфазными развязывающими токовыми трансформаторами (т.е. для поверки счётчиков, не имеющих гальванической развязки между цепями тока и напряжения, например с возможностью поверки шунтовых счетчиков),
- интерфейсами RS-232 или RS-485, позволяющими проводить проверку работоспособности интерфейсов, а так же проверку функции записи параметров в память поверяемых СИ,

- блоком для поверки точности хода часов поверяемых СИ.

Установки выпускаются в различных конструктивных вариантах в зависимости от размера стенда и количества устройств для подключения поверяемых СИ (см. табл.1).

Таблица 1. Конструктивные варианты исполнения

Вариант исполнения	Кол-во уст-в навески	Кол-во этажей стенда	Кол-во стен-дов	Габаритные размеры (длина, ширина, высота) не более, мм	Масса (нетто/брут-то), не более, кг
НЕВА-Тест 6303 x - 0.xx 6 Ex x	6	1	1	2000×850×1650	220/300
НЕВА-Тест 6303 x - 0.xx 16 Ex x	16	2	1	2250×850×2000	320/420
НЕВА-Тест 6 303 x - 0.xx 32 Ex x	32	2	2	2x(2250×850×2000)	320/420+200/320

В зависимости от метрологических характеристик используемого эталонного средства измерения Установки выпускается в двух вариантах исполнения (см. табл.2):

Структура обозначений модификаций установок:

НЕВА-Тест 6303	X -	X. XX	XX	XX	T	
						Т – означает наличие блока проверки точно-
						сти хода часов
						Тип интерфейса:
						E4 – RS485;
						E2 – RS232.
						Количество подключающих устройств
						Класс точности:
						0.05 или 0.1
						И – означает наличие развязывающих токо-
						вых трансформаторов
						Тип Установки

Конструктивно Установки выполнены в виде приборной стойки, на которой расположен стенд с устройствами навески для установки и подключения поверяемых СИ. Над каждым устройством навески расположен локальный вычислитель погрешности с разъёмами для подключения испытательных выходов СИ и разъёмами для подключения интерфейса RS-232 или RS-485. Каждый локальный вычислитель погрешности имеет свой номер.

На лицевой панели приборной стойки расположены выключатель питания и кнопки включения, отключения источника фиктивной мощности.

Генератор испытательных сигналов формирует сигналы для усилителей тока и напряжения. Нагрузкой усилителей каналов напряжения служат подключенные параллельно цепи напряжения образцового счетчика и всех поверяемых счетчиков. Сигналы с выходов усилителей тока поступают непосредственно на поверяемые счетчики и образцовый счетчик, соединенные между собой последовательно. (В Установках, укомплектованные трехфазными развязывающими трансформаторами тока, сигналы с выходов усилителей тока поступают на трехфазные развязывающие трансформаторы тока, соединенные между собой последовательно. К выходным обмоткам трансформаторов тока подключаются токовые цепи счетчиков.

Трансформаторы тока работают в режиме короткого замыкания, это обеспечивает отсутствие взаимного влияния фазных сигналов напряжения и тока при поверке электросчетчиков. Установки, укомплектованные трехфазными развязывающими трансформаторами тока, позво-ляют осуществлять поверку счетчиков, не имеющих перемычек между цепями тока и напряже-ния и счетчиков с шунтовыми датчиками тока.)

Параметры сигналов источника фиктивной мощности измеряются эталонным счетчиком, подключенным параллельно цепям напряжения. Токовая цепь эталонного счетчика подключена в разрыв токовой цепи источника фиктивной мощности. Эталонный счетчик имеет высокочастотный и низкочастотный импульсные выходы, частота импульсных сигналов на которых пропорциональна энергии подаваемой на поверяемые счетчики.

Погрешность поверяемого счетчика определяется вычислителем погрешности по результатам сравнения частоты импульсных сигналов поступающих от эталонного и поверяемого счетчиков.

Внешний вид Установки представлен на рис. 1.

Рисунок 1. Внешний вид Установки

Места установки пломб поверителя расположены:

- на крепежных винтах в левых верхних углах передней и задней панелей эталонного счетчика,
- на крепежных винтах трехфазных развязывающих трансформаторов тока.

Программное обеспечение

Идентификационные данные программного обеспечения приведены в таблице 2.

Таблина 2.

Наименование ПО	Идентификационное наименование ПО	Номер версии (иденти- фикационный номер)	Цифровой идентификатор ПО (контрольная сумма исполняемого кода по алгоритму СRС16)
Встроенное ПО блока управления	0707	не ниже 094 ver 1.2	195C
Встроенное ПО вычислителей по- грешности	0707	не ниже 034 v 1.9	278E

Встроенное ПО блока управления и вычислителей погрешности не является метрологически значимым и не требует дополнительной защиты. Уровень защиты программного обеспечения блока управления и вычислителей погрешности от непреднамеренных и преднамеренных изменений в соответствии с МИ 3286-2010 – «А».

Метрологические параметры Установки обеспечиваются входящим в её состав эталонным счетчиком. Уровень защиты программного обеспечения эталонного счетчика от непреднамеренных и преднамеренных изменений в соответствии с МИ 3286-2010 – «С». Для предотвращения доступа к памяти программ эталонный счетчик должен быть опломбирован.

В комплекте с Установкой для управления и отображения параметров на ПК поставляется ΠO верхнего уровня «Тест- $CO\Phi T$ ». Метрологически значимых частей внешнее ΠO не содержит.

Метрологические и технические характеристики

Установки обеспечивают формирование трехфазной системы токов и напряжений с параметрами и в диапазонах, указанными в таблице 3.

Таблица 3.

Наименование технической характери-	Значение те	хнической хар		
СТИКИ	Диапазон	Дискретность задания	Допускаемое отклонение	Примечание
Действующее (среднеквадратическое) значение переменного тока I_{Φ} , A	от 0,01 до 120	0,001	±0,5 %	в диапазоне токов 0,25 A 120 A
Действующее (среднеквадратическое) значение переменного напряжения U_{Φ} (U_{Λ}), B	I OT U	0,01	±0,5 %	в диапазоне напряжений 40/70 В 300/520 В
Фазовый угол между фазными напряжениями, и между током и напряжением по 1-ой гармонике, градус	от 0 до 360	0,1	±2	
Возможность введения гармоник основной частоты в цепи тока и цепи напряжения	от 2 до 21			не более 40%
Номинальные значения устанавливаемого коэффициента мощности	0,5L; 0,8L; 1,0; 0,8 C; 0,5C			

Наименование технической характери-	Значение те	хнической хар		
СТИКИ	Диапазон	Дискретность задания	Допускаемое отклонение	Примечание
Частота основной гармоники переменного тока, Гц	от 45 до 65	0,01		
Нестабильность установленного значения активной мощности за 120 с, не более %			±0,05	при Кр=1
Коэффициент нелинейных искажений при генерации синусоидальных сигналов тока и напряжения при максимально допустимой активной нагрузке не более, %			±1,0	

Общие технические характеристики Установок приведены в таблице 4.

Таблица 4.

Характеристика	Значение
Полная мощность потребляемая от сети питания,	
(Установками с количеством мест 6/16/32) не более, ВА	
- для Установок без развязывающих ТТ,	1500 /2500 /5000
- для Установок с развязывающими TT	2500 /5000 / -
Выходная мощность Установки на поверяемый счетчик по каждой фазе	
(всего для Установок с количеством мест 6/16/32) не менее, В А:	
- в цепи тока (при токе100A):	
- c развязывающими TT,	60 (650/ 1500 / -)
 без развязывающих ТТ, 	35 (350/650/1500)
- в цепи напряжения	15 (100/ 240 /400)
Среднее время наработки на отказ, не менее, ч	25000
Средний срок службы, не менее, лет	8

Установки обеспечивают метрологические характеристики по истечении времени установления рабочего режима не более 20 мин.

Рабочие Условия применения:

температура окружающего воздуха, $^{\circ}$ C относительная влажность воздуха, не более, $^{\circ}$ 6 80 при 25 $^{\circ}$ C атмосферное давление, кПа (мм рт. ст.) 84 – 106,7 (630 –800)

Электропитание Установки осуществляется от однофазной (220 \pm 10%) или трехфазной (3×220/380B \pm 10%) сети переменного тока (50 Γ ц \pm 5%) при коэффициенте несинусоидальности не более 5%.

Метрологические характеристики (MX) Установок определяется MX эталонных СИ, входящих в комплект Установки, и приведены в таблице 5.

Таблица 5.

т иолици 5.				
			Пределы допускаемой основной	
Вид погрешности измеряемых па-	П	погрешност	погрешности Установок	
раметров электрической энергии	Диапазоны измерений	НЕВА-Тест 6303	НЕВА-Тест 6303	Примечание
The state of the state of		0.05	0.1	
Основная относительная погрешность	$50 \text{ MA} < I_{\Phi} \le 120 \text{ A}$	± 0,1		
измерения среднеквадратических зна-	$10 \text{ MA} \leq I_{\Phi} \leq 50 \text{ MA}$		± 0.7	
чений тока I_{Φ} не более, %	10 M/1 <u>< 1</u> φ <u>< 30 M/1</u>	_ `	0,2	
	40/70 × II / II × 490/920 D		0,1	
Основная относительная погрешность	$ 40/70 < U_{\Phi}/U_{\Pi} \le 480/830 \text{ B}$			
измерения среднеквадратических зна-	$10/17 \le U_{\Phi}/U_{\Pi} \le 40/70 B$	± 0),15	
чений напряжения ${\rm U}_{\Phi}$ (${\rm U}_{\rm Л}$), %				
Абсолютная погрешность измерения	от 45 до 65 Гц	0	05	
частоты сети не более, Гц	01 15 40 05 1 4	0,	0.5	
частоты сети не облес, т ц				
Абсолютная погрешность измерения	от 0,5L до 0,5С	0,0	005	
коэффициента активной мощности не				
более				
			Т	
Основная относительная погрешность	$\cos \varphi 1 \pm 0.1$	0.45	0.55	в диапазоне
измерения активной энергии и актив-	$0.01 \leq I_{\Phi} \leq 0.025 \text{ A}$		$\pm 0,20 (\pm 0,50*)$	
ной мощности не более %	$0.025 < I_{\Phi} \le 0.05 A$	$\pm 0.10 (\pm 0.20*)$		
	$0.05 < I_{\Phi} \le 0.10 A$	± 0,05	$\pm 0.10 (\pm 0.20*)$	до 300/520 В
	$0.10 < I_{\Phi} \le 100 A$	$\pm 0,05$	$\pm 0,10$	
	$100 < I_{\Phi} \le 120 A$	$\pm 0,20$	± 0.30	
		,	,	
	$\cos \varphi \ 0.5L - 1 - 0.5C$			
	$0.01 \le I_{\Phi} \le 0.025 \text{ A}$	+ 0.10 (+ 0.50*)	$\pm 0.15 (\pm 0.50*)$	
	$0.025 < I_{\Phi} \le 0.05 A$	$\pm 0.10 (\pm 0.20*)$		
	$0.05 < I_{\Phi} \le 0.10 \text{ A}$	± 0,10	$\pm 0.15 (\pm 0.20*)$	
	$0.10 < I_{\Phi} \le 0.10 \text{ A}$	± 0,08	± 0.15 ± 0.15	
	$100 < I_{\Phi} \le 100 A$	± 0,30	± 0,40	
	$100 < I_{\Phi} \le 120 A$	± 0,30	± 0,40	
	222 0 251 0 51			
	$\cos \varphi \ 0.25L - 0.5L$. 0.15	. 0.20	
	$0.10 \le I_{\Phi} \le 100 \text{ A}$	± 0,15	± 0,20	
Основная относительная погрешность	$\sin \varphi 1 \pm 0.1$			в диапазоне
измерения реактивной энергии и реак-	$0.01 \leq I_{\Phi} \leq 0.025 \text{ A}$		\pm 0,40 (\pm 0,50*)	напряжений
тивной мощности не более %	$0.025 < I_{\Phi} \le 0.05 A$	$\pm 0,20 \ (\pm 0,30*)$		от 40/70
	$0.05 < I_{\Phi} \le 0.10 A$	$\pm 0,10$	$\pm 0,\!20$	до 300/520 В
	$0.10 < I_{\Phi} \le 100 A$	$\pm 0,10$	$\pm 0,20$	
	$100 < I_{\Phi} \le 120 A$	± 0,40	$\pm 0,60$	
	$\sin \varphi \ 0.5L - 1 - 0.5C$			
	$0.01 \le I_{\Phi} \le 0.025 \text{ A}$	$\pm 0.20 (\pm 0.50*)$	$\pm 0.30 (\pm 0.50*)$	
	$0.025 < I_{\Phi} \le 0.05 A$	$\pm 0.20 (\pm 0.30*)$		
	$0.05 < I_{\Phi} \le 0.10 \text{ A}$	± 0,20	± 0,30	
	$0.10 < I_{\Phi} \le 0.10 \text{ A}$	± 0,15	± 0,30	
	$100 < I_{\Phi} \le 100 A$	± 0,60	± 0,80	
	100 \ 1φ \ 120 A	0,00	_ 0,00	
	sinф 0,25L-0,5L и 0,5C-0,25C			
		± 0.20	+ 0.40	
Потрання	$0.10 \le I_{\Phi} \le 100 \text{ A}$	± 0,30	± 0,40	
Погрешность измерения периода сле-),5	
дования импульсов, ppm **				
L	I .	l .		

^{* -} для исполнения с трехфазными развязывающими токовыми трансформаторами НЕВА-Тест 6303 И (отсутствие знака * означает, что данное значение действительно как для исполнения с развязывающими токовыми трансформаторами, так и без них)

^{** -} для исполнения с блоком для поверки точности хода часов

Знак утверждения типа

Знак утверждения типа наносится на титульных листах эксплуатационной документации типографским способом и на лицевой панели Установок (на щитке, закрепленном на корпусе приборной стойки).

Комплектность средства измерений

В таблице 6 приведен состав комплекта поставки Установок автоматических трехфазных для поверки счётчиков электрической энергии НЕВА-Тест 6303.

Таблица 6

	Наименование	Обозначение	Кол-во*
1	Установка автоматическая трехфазная НЕВА-Тест 6303		1 шт.
	Трансформатор тока развязывающий **	TACB.411722.005	6/16/32 шт.
	Трехфазный эталонный счетчик	TAOB.411722.003	1 шт.
	Блок поверки точности хода часов ***		ШТ.
2	Головка фотосчитывающая		6/16/32 шт.
3	Комплект ЗИП		1 комплект
4	Формуляр	ТАСВ.411722.005 ФО	1 экз.
5	Руководство по эксплуатации	TACB.411722.005 PЭ	1 экз.
6	Программное обеспечение для ПК «Тест-СОФТ» на CD		1 шт.
7	Методика поверки ****	TACB.411722.005 MΠ	1 экз.

^{* -} для Установок с количеством мест 6/16/32 соответственно

Поверка

осуществляется по документу "Установки автоматические трехфазные для поверки счётчиков электрической энергии НЕВА-Тест 6303. Методика поверки ТАСВ.411722.005 МП", утвержденному ГЦИ СИ Φ ГУП «ВНИИМС» в сентябре 2012 г.

Основные средства поверки:

- Прибор электроизмерительный эталонный многофункциональный «Энергомонитор-3.1К 02» или аналогичный, со следующими основными техническими характеристиками:
 - погрешность измерения тока: $\pm [0.01+0.005 |(I_{\rm H}/I)-1|]$ для $I_{\rm H}$ от 0.1 A до 100 A, $\pm [0.01+0.01|(I_{\rm H}/I)-1|]$ для $I_{\rm H}$ 0.05 A,
 - погрешность измерения напряжения $\pm [0.01+0.005 | (U_H/U) 1 |]$,
 - погрешность измерения активной мощности $\pm [0.015+0.005 | (P_H/P) 1]$.
- Установка для проверки электрической безопасности GPI-725A, со следующими основными техническими характеристиками:
 - испытательное напряжение переменного тока не менее 1000В,
 - диапазон измерения сопротивлений от 1МОм до 10 ГОм,
 - относительная погрешность измерения сопротивления изоляции (в диапазоне от $1\,\mathrm{MOm}$ до $50\,\mathrm{MOm}$) $\pm\,0.05*R_{\mathrm{HeII}}$.

Сведения о методиках (методах) измерений

Методика измерений изложена в Руководстве по эксплуатации "Установка автоматическая трехфазная для поверки счётчиков электрической энергии HEBA-Тест 6303. Руководство по эксплуатации TACB.411722.005 РЭ".

^{** -} только для исполнения НЕВА-Тест 6303 И с развязывающими трансформаторами тока

^{*** -} только для исполнения НЕВА-Тест 6303 Т с блоком для поверки точности хода часов

^{**** -} методика поверки высылается по запросу

Нормативные и технические документы, устанавливающие требования к установкам автоматическим трехфазным для поверки счётчиков электрической энергии HEBA-Tect 6303

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 8.132-74 «Государственная система обеспечения единства измерений. Государственный специальный эталон и общесоюзная поверочная схема для средств измерений силы тока от 0,04 до 300 А в диапазоне частот от 0,1 до 300 МГц»;

МИ 1935-88 «ГСИ. Государственная поверочная схема для средств измерений электрического напряжения до 1000 В»;

ГОСТ Р 8.746 – 2011 «Государственная поверочная схема для средств измерений коэффициента масштабного преобразования и угла фазового сдвига напряжения переменного тока промышленной частоты в диапазоне от 0,1/ до 750/ кВ»;

ГОСТ Р 8.568-97 «Государственная система обеспечения единства измерений. Аттестация испытательного оборудования. Основные положения».

Технические условия «Установки автоматические трехфазные для поверки счётчиков электрической энергии HEBA-Тест 6303. TACB.411722.005 ТУ».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

 проведение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

ООО «Тайпит - Измерительные приборы» (ООО «Тайпит - ИП»), г. Санкт Петербург Адрес: 193318, г.Санкт — Петербург, ул. Ворошилова, д.2 Тел./факс: (812) 326-1090 / (812) 325-5864

Испытательный центр

Государственный центр испытаний средств измерений Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ГЦИ СИ ФГУП «ВНИИМС»).

Юридический адрес: 119361, г. Москва, ул. Озерная, д. 46.

Тел. 8 (495) 437 55 77; Факс 8 (495) 437 56 66; E-mail: office@vniims.ru.

Номер аттестата аккредитации 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин М.П. 25 " 12 2012г.